On the Bergman metric of pseudoconvex domains in a complex projective space
نویسندگان
چکیده
منابع مشابه
Pseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملBoundary Behavior of the Bergman Kernel Function on Some Pseudoconvex Domains in C "
Let il be a bounded pseudoconvex domain in C" with smooth denning function r and let zo 6 bCl be a point of finite type. We also assume that the Levi form ddr(z) of bil has (n — 2)-positive eigenvalues at z0 . Then we get a quantity which bounds from above and below the Bergman kernel function in a small constant and large constant sense.
متن کاملSobolev Space Projections in Strictly Pseudoconvex Domains
The orthogonal projection from a Sobolev space WS(Q) onto the subspace of holomorphic functions is studied. This analogue of the Bergman projection is shown to satisfy regularity estimates in higher Sobolev norms when ß is a smooth bounded strictly pseudoconvex domain in C". The Bergman projection P0: L2(ü) -» L2(S2) n {holomorphic functions}, where S2 c C" is a smooth bounded domain, has prove...
متن کاملSchatten Class Hankel Operators on the Bergman Spaces of Strongly Pseudoconvex Domains
In this paper, we characterize holomorphic functions / such that the Hankel operators Hj are in the Schatten classes on bounded strongly pseudoconvex domains. It is proved that for p > In , Hj is in the Schatten class Sp if and only if / is in the Besov space Bp ; for p < In , Hj is in the Schatten class Sp if and only if / = constant.
متن کاملHankel Operators on the Bergman Space of Bounded Symmetric Domains
Let ii be a bounded symmetric domain in C with normalized 2 volume measure dV . Let P be the orthogonal projection from L (il, dV) 2 2 onto the Bergman space La(Q) of holomorphic functions in L (ii, dV). Let P be the orthogonal projection from L (ii, dV) onto the closed subspace of antiholomorphic functions in L (ii, dV). The "little" Hankel operator h, with symbol / is the operator from La(Ci)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2005
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-05-07780-4